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Abstract

Rural hospitals face financial constraints that hinder investment in new medical
technologies. Disinvestment contributes to regional disparities in health care quality,
particularly in capital-intensive service lines like imaging, where reliance on outdated
equipment increases the risk of diagnostic errors. To address access gaps, recent policy
efforts have funded investment subsidies for rural hospitals. By expanding access to
advanced medical technologies, these policies can meaningfully improve clinical out-
comes for underserved rural populations. However, housing high-cost technologies at
low-volume rural hospitals may not be cost-effective. This paper examines the cost-
access trade-off associated with deploying expensive diagnostic equipment in rural
markets by studying the diffusion of 3D-mammography (3DM). My analysis focuses
on the market for breast cancer screenings in rural Georgia, where a subsidy for rural
hospitals alleviated financial constraints, facilitating the adoption of 3DM. Leveraging
changes in geographic access to 3DM over time, I demonstrate how distance to 3DM
affects patients’ technology choices and screening outcomes. Following the adoption
of 3DM at a rural hospital, I estimate a 45 percentage point increase in the proba-
bility that local patients will screen with 3DM instead of 2D mammography (2DM).
Increased 3DM uptake improves local screening outcomes, reducing the average likeli-
hood of a false-positive screening by 1.8 percentage points (21 percent). To study the
effect of subsidized technology adoption, I estimate a structural model of demand for
mammography. Counterfactual analyses show that a blanket investment policy fund-
ing 3DM upgrades at every rural hospital is inefficient, resulting in over-investment
in high-access markets where adoption is socially redundant, or in sparsely populated
markets that cannot sustain sufficient demand. Welfare is maximized by a targeted
investment policy that allocates 3DM scanners to hospitals operating in midsize mar-
kets where patients are geographically isolated from incumbent 3DM providers.
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1 Introduction

Rural hospitals face persistent financial constraints that hinder investment in physical

capital. Declining cash flows have eroded profit margins, making it difficult for rural hospi-

tals to acquire medical technologies that are commonplace in better-resourced urban facilities

(Joynt et al., 2011; Adler-Milstein et al., 2015; Horwitz et al., 2018). This technology gap

contributes to disparities in health care quality, particularly in capital-intensive service lines

like imaging, where reliance on outdated equipment can impede the delivery of high-quality

care (AHRQ, 2024).

The widening technology gap between rural and urban hospitals has prompted calls

for increased public investment in rural health care infrastructure (Deryugina and Molitor,

2021). By reducing geographic barriers to advanced screening procedures, technology adop-

tion reduces reliance on lower-quality alternatives. As a result, these public investments have

the potential to improve clinical outcomes for underserved rural populations (Scoggins et al.,

2012; Syed et al., 2013). However, when the fixed costs of adoption are large, small rural hos-

pitals may lack the patient volume needed to deliver upgraded services at a reasonable unit

cost. Thus, publicly funded efforts to close technology gaps may not be cost-effective. These

conflicting forces create a trade-off between expanding access and maintaining cost-efficiency.

This paper evaluates the cost-access trade-off in the market for breast cancer screening.

As the second leading cause of death for women in the United States, biennial screenings for

breast cancer are recommended for all women ages 50–74 (USPSTF, 2016). Traditionally,

these have been performed using 2D-mammography (2DM). However, recent technological

advances have brought a new tool to this market. Approved by the FDA in 2011, 3D-

mammography (3DM) offers clear clinical advantages over traditional 2DM screenings. By

the end of 2017, 3DM supplanted 2DM as the predominant mode of screening for women in

the United States. However, the diffusion of this technology has been slower in rural markets

where hospitals are less likely to house expensive 3DM-scanners (Richman et al., 2019).

To explore the effects of 3DM adoption, I develop and estimate a model of demand for

breast cancer screening where patients have preferences over hospitals, distance, and screen-

ing technologies. The model captures the effect of 3DM adoption on local screening patterns,

distinguishing between marginal substitution (from 2DM to 3DM) and inframarginal substi-

tution (from regional 3DM to local 3DM). I combine these structural substitution patterns

with reduced form estimates of screening quality to quantify the effect of 3DM adoption
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on local screening outcomes. The model is estimated using a four-year panel of individual

screening records for the entire state of Georgia. I use the estimated model to simulate coun-

terfactuals that alter the distribution of rural 3DM supply. By varying the location of 3DM

scanners across rural hospitals, I illustrate how the social returns to adoption vary across

markets, providing insight into how public investments in rural health care infrastructure

should be targeted.

My analysis focuses on the market for breast cancer screenings in Georgia, where a sub-

sidy for rural hospitals alleviated financial constraints on capital investment, facilitating the

adoption of 3DM. To quantify the effect of the subsidy on Georgia’s rural 3DM supply, I

estimate an event-study model comparing adoption rates between subsidized hospitals in

Georgia and rural hospitals in other southern states. I find that thee subsidy sharply in-

creased 3DM investment, resulting in a 20 percentage point increase in the probability of

3DM adoption over the first three years of the policy.

This quasi-exogenous variation in the supply of 3DM at rural hospitals in Georgia plays

a key role in my analysis. Using patient-level screening records from 2016–2019, I exploit

changes in geographic access to 3DM over time to measure the relationship between distance

and technology choice. I find that distance strongly mediates access in this market. Following

3DM adoption at a rural hospital, I estimate a 45 percentage point increase in the proba-

bility that local patients screen with 3DM instead of 2DM. Moreover, I show that increased

3DM utilization meaningfully improves local screening outcomes. Leveraging variation in

geographic access to 3DM to instrument for technology choice, I estimate that substitution

toward 3DM decreases the average probability of a false-positive scan by 1.8 percentage

points.

These reduced form estimates reveal a clear relationship between local access to 3DM and

technology choice, but the mechanisms driving this pattern remain unclear. To investigate

the underlying factors that affect patient choice, I estimate a structural model of demand for

breast cancer screenings. Demand estimates show that while patients prefer higher-quality

3DM screenings, they have stronger preferences for screenings at local providers, where travel

costs are lower. As a result, there is sharp substitution toward local 3DM screenings in the

post-adoption period. The model predicts that in the absence of adoption, 60% of patients

utilizing local 3DM would have received 2DM screenings. My estimates reveal substantial

heterogeneity in the salience of travel costs; minority groups of lower socioeconomic status

are more sensitive to travel, exhibiting a distance elasticity that is 25% above the baseline
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estimate. Thus, technology gaps likely exacerbate health inequities by limiting access for

low-income and marginalized groups.

Finally, I quantify the welfare effects of rural 3DM adoption by comparing patients’ will-

ingness to pay for local 3DM to the fixed cost of adoption. I find that expanding geographic

access to advanced mammography scanners generates meaningful welfare gains; however,

these gains are highly heterogeneous and sometimes offset by cost inefficiencies. Counterfac-

tual analyses show that a blanket investment policy funding 3DM upgrades at every rural

hospital is inefficient, resulting in over-investment in high-access markets where adoption is

socially redundant and sparsely populated markets that cannot sustain sufficient demand.

Welfare is maximized by a targeted investment policy that allocates 3DM scanners to hospi-

tals operating in midsize markets where patients are geographically isolated from incumbent

3DM providers. My results show that strategically targeted investments in rural healthcare

infrastructure can promote access to high-quality rural healthcare services without sacrific-

ing cost-efficiency.

This paper contributes to several strands of research. First, it adds to the literature on

rural health care access. Prior work highlights the crucial role rural hospitals play in provid-

ing essential services to isolated communities. For example, Gujral and Basu (2020) show

that rural hospital closures increase local mortality rates for emergency patients by eight per-

centage points, while Kozhimannil et al. (2020) documents the substantial gaps in obstetric

care caused by such closures. I extend this literature by focusing on access to higher-quality

diagnostic care. In particular, I examine how proximity to advanced screening technologies

shapes screening patterns in rural areas, a key factor in assessing whether current diagnostic

networks meet the needs of these populations.

Second, I add new evidence to the extensive literature on the impacts of provider entry,

service adoption, and technology diffusion in health care markets. Much of this literature

draws on theory from Mankiw and Whinston (1986), which shows that when fixed costs are

present, the marginal entrant’s effect on welfare depends on the size of the product diversity

and business stealing effects relative to fixed costs. Horn et al. (2021) explore these effects

in the context of robotic surgery. While they find evidence that the market for surgical in-

terventions expands as more hospitals adopt this technology, adoption also leads to business

stealing by changing the allocation of patients across hospitals. Similarly, Rosenkranz (2021)

studies the repeal of entry regulation for dialysis centers in North Carolina and finds that

marginal centers reduce patients’ distance to higher-quality peritoneal dialysis, expanding
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the market for high-quality care. I contribute to this literature by focusing on the diffusion

of medical technology in rural healthcare markets, where 3DM adoption may substantially

reduce the distance local patients have to travel for advanced screenings. Following adoption,

I find that the degree of business stealing versus technology substitution is directly related

to patients’ pre-adoption distance to incumbent 3DM providers, suggesting that the impact

of rural technology adoption is dependent on proximity to the existing network of care.

Finally, by studying 3DM adoption, this paper provides new insight into the impact of

service adoption at rural hospitals. Much of the literature in this area has focused on ser-

vices that exhibit quality-returns-to-scale (Cutler and Kolstad, 2010; Trogdon, 2009; Yang,

2023; Dingel et al., 2023). However, less evidence exists regarding the impact of rural ser-

vice expansions in clinical settings without strong quality-returns-to-scale. By studying the

adoption of a high-cost medical technology with clear clinical advantages, this paper iso-

lates the trade-off between duplicating fixed costs and improving geographic access to care.

My results show that there are large potential welfare gains from increasing the supply of

advanced diagnostic services at rural hospitals; however, these effects are tempered by re-

ductions in cost efficiencies, creating a risk of over-investment in small markets that cannot

sustain sufficient demand for these services.

The remainder of the paper is organized as follows. Section 2 provides institutional

details and introduces my data. Section 3 shows reduced form analysis of the effect of the

policy on the rural 3DM supply and the impact of adoption on screening patterns. Section

4 outlines the model and the estimation strategy while Section 5 presents results. Section 6

shows welfare and counterfactual analysis. Section 7 concludes.

2 Setting and Data

2.1 Technology Gaps in Rural Health Care Markets

Over time, rural hospitals have faced mounting financial challenges. Depopulation and

increased competition from urban providers generated demand volatility, resulting in lower

profit margins. From 2008–2010, 60 percent of rural hospitals reported negative annual prof-

its, and since 2013, 8 percent of rural hospitals have closed (Sheps Center, 2024; Carroll

et al., 2023). This financial fragility hampers investment in new technology, as hospitals

may lack the necessary liquidity for capital investments (Hegland et al., 2022). Moreover,

financial uncertainty increases borrowing costs, as lenders view rural hospitals as high-risk
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investments. These factors deter rural hospitals from purchasing expensive diagnostic equip-

ment, limiting rural communities’ access to certain imaging services (AHRQ, 2024).

A notable rural-urban technology gap exists in the market for breast cancer screenings.

Since its approval by the FDA in 2011, urban hospitals have rapidly integrated 3DM into their

breast cancer screening practices; however, it is less likely to be offered by rural providers

(FDA, 2025; Lee et al., 2021). This disparity is attributed to the fact that rural facilities

often lack the liquidity required to finance the fixed cost of upgrading to this advanced

technology. In 2016, the average reported price of a 3DM scanner was $380,000 (CMS,

2016). This represents a substantial investment for rural hospitals whose median equipment

spending totaled $400,000 in the same year. The primary clinical benefit of 3DM is that it

has a lower false-positive rate relative to traditional 2DM. While both modalities have high

sensitivity (the ability to detect true positives), 3DM has a higher specificity (the ability to

identify those without the disease correctly). Previous studies have shown that 3DM reduces

the false screening rate by 20%, resulting in 16 fewer unnecessary follow-up visits per 1,000

screenings (Friedewald et al., 2014; Kerlikowske et al., 2022; Skaane et al., 2013). This paper

centers on the mammography technology gap in rural Georgia, where many rural areas were

initially isolated from these clinical advancements. My analysis leverages variation in access

to 3DM following a subsidy that spurred 3DM adoption at rural hospitals in Georgia.

2.2 Georgia’s Rural Hospital Tax Credit

In 2017, Georgia implemented the Rural Hospital Tax Credit (RHTC), an innovative

funding mechanism that effectively turned private donations to rural hospitals into 100%

state tax credits. In 2017, RHTC funds were available to non-profit or public hospitals in

counties with populations of less than 35,000. In 2018, the state raised the population limit

to 50,000, making nine additional hospitals eligible for the program. From 2017–2019, hos-

pitals received an average of $650,000 per year. Table A1 shows eligibility for the program

and the evolution of donations received over the first three years of the policy.

Over this time period, nearly every qualifying hospital received RHTC funds. The

statewide cap on donations was raised by $50 million in 2018, which led to a sharp in-

crease in total and average funds received. Importantly, these funds were unrestricted in

use, effectively boosting liquidity at participating hospitals. Table A2 reports aggregate in-

formation on reported use of RHTC funds in 2018. On average, hospitals spent 80% of funds
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available and held the remaining 20% as cash reserves. The bottom half of Table A2 shows

that on average $250,000 of subsidy funds were spent on medical equipment in 2018, roughly

30% of all spending. Many hospitals reported using RHTC funds to purchase a 3DM unit.

My analysis is consistent with these reports, as I find that by the end of 2019, 22 of the 58

subsidized hospitals acquired a 3DM scanner.

2.3 Data

This analysis relies on two primary datasets. To measure changes in the supply of 3DM

across Georgia, I use technology adoption records. To measure changes in mammography

utilization patterns, I use screening records for the entire state of Georgia.

Technology Adoption Records: I use administrative data from the FDA’s X-Ray In-

staller database, which records every new installation of radiology equipment at U.S. health

care providers. Each record contains the facility’s name and location, the type of equipment

installed, and the date of installation. Importantly, the records indicate whether the equip-

ment is for mammography and whether it has 3D capability. I use these records to construct

a panel of 3DM adoption at hospitals across the southeast from 2014–2019.

Breast Cancer Screening Data: I incorporate patient-level data to observe mammogra-

phy utilization. This data comes from the health care Cost and Utilization Project (HCUP),

which records outpatient discharge records for all hospitals and ambulatory surgery centers in

Georgia.1 Each of these records includes information on when a patient visits a given facility

and which procedures were performed during the visit, which allows me to observe whether

a patient received a 2DM or 3DM screening. Records list a patient’s home zip code and

demographic information on race, age, and insurance type. The data also include a unique

patient identifier, allowing each encounter to be linked to a patient’s care history over time.

I use HCUP data from 2016–2019 to measure changes in hospital mammography service

offerings and patient treatment patterns. I use the CPT procedure codes listed in Table A4,

and the service identification algorithm introduced by Richman et al. (2022) to identify the

type of technology used in a screening encounter. My analysis focuses exclusively on initial

screening mammography encounters rather than diagnostic follow-ups. In the HCUP data,

I observe 22 subsidized rural hospitals that started offering 3DM between 2017 and 2019.

1I do not observe screenings in office-based imaging centers. However, I validate my data coverage against
aggregate claims counts from Medicare Claims data in Table A5. Subsetting my data to match the FFS
population, I capture 87% of 3DM screenings and 76% of 2DM screenings at the state level.
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This aligns exactly with the 22 new installations recorded in the FDA data for rural Geor-

gia, giving confidence that the adoption events are measured consistently across data sources.

Supplementary Data: I use information on hospital size and financial health from Medi-

care Cost Reports. To measure the cost of 3DM adoption and utilization, I rely on data from

the Center for Medicare and Medicaid Services’ Practice Expense Files. These files provide

itemized estimates of the expenses associated with mammography service lines, which I use

to measure the marginal cost of mammography procedures. Finally, I use the American

Community Survey for information on zip code demographics.

3 Reduced Form Evidence

This section first explores regional differences in geographic access to mammography and

screening patterns across Georgia. I then measure the impact of Georgia’s RHTC on the

rural 3DM supply. Next, I exploit geographic variation resulting from the adoption of 3DM

at subsidized rural hospitals to identify key factors influencing 3DM utilization. Specifically, I

estimate the impact of changes in relative distance to 3DM, defined as the difference between

a patient’s nearest 2DM and 3DM providers, on technology utilization among women in rural

areas. Finally, I explore the effect of adoption on screening outcomes, leveraging variation in

rural access to 3DM over time to estimate the impact of technology choice on the probability

of false-positive screening results.

3.1 Descriptive Screening Patterns

In comparison to women in other areas of the state, rural women were initially more

isolated from 3DM. Table 1 shows that in 2016, the year before the subsidy, there were

significant differences in distance to 3DM between these groups. The average rural patient

would have to travel 22.5 miles to reach the nearest 3DM provider, nearly double the dis-

tance for non-rural patients. This difference persists across the 25th and 75th percentiles of

the distribution. In contrast, there is a small difference in the distance to 2DM between the

two groups, which is not statistically distinguishable from zero. Furthermore, the share of

rural women receiving screenings that use 3DM is considerably lower at 12.1%, compared

to 30.6% for non-rural women. At 25th percentile, the 3DM screening rate is low for both

groups, but there is a sharp gap at the 75th percentile, where 45% of non-rural screenings

are performed with 3DM compared to 30% of rural screenings.
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Figure 1 shows how distance shapes screening technology choice among the sample of rural

women receiving mammography screenings in 2016. The left plot shows how the probability

of screening with 2DM or 3DM varies across bins of travel distance.

Table 1: Disparities in Rural 3DM Access (2016)

Sample Characteristics Rural Non-Rural p-value

Distance to 3DM (mi)
Mean 22.5 12.5 0.000
25th % 13.5 8.5
75th % 35.5 23.3

Distance to 2DM (mi)
Mean 14.6 11.1 0.450
25th % 8.9 8.2
75th % 20.75 14.95

Share of Screenings Performed with 3DM
Mean 12.1% 30.6% 0.000
25th % 3.4% 5.1%
75th % 30.0% 45.5%

Notes: Table reports mean, 25th, and 75th percentiles of distance to nearest
mammography provider and the share of screenings performed with 3DM.
Sample includes all Georgia women screened in 2016. Distances are calcu-
lated at the zip code level using patient residence and provider location.
p-values test for differences in rural versus non-rural means. Data source:
HCUP screening records.

There is a steep but continuous decrease in the share of screenings performed with 3DM

across the first four distance bins. Interestingly, beyond distance bin four, the share of

women screening with 3DM remains constant at roughly 10%, suggesting that some patients

are willing to travel significant distances to access 3DM. The x-axis of the right plot shows

relative distance bins, defined as the additional distance in miles that patients must travel

to reach the nearest 3DM provider relative to the nearest 2DM provider. The share of

women screening with 3DM declines as the differential distance to 3DM increases. However,

there is a sharp drop between distance bin zero, where a patient’s closest provider already

offers 3DM, and the subsequent distance bin where 3DM is not locally available. This non-

linear relationship suggests that slight differences in proximity to 3DM can strongly influence

screening decisions.
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3.2 Policy-Driven Expansion of 3DM Supply

Next, I measure variation in the supply of 3DM driven by Georgia’s RHTC, which began

subsidizing technology upgrades at financially constrained rural hospitals in 2017.

Figure 1: Cross-Sectional Variation in Technology Choice (2016)
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Notes: The plots show the average probability of screening technology choice across bins
of distance. The x-axis of the left plot shows absolute distance. The x-axis of the right
plot shows relative distance, defined as the difference between the closest 2DM and 3DM.
Probabilities are calculated at the zip-code level using all mammography screenings in rural
Georgia, 2016.

I compare the sample of subsidized rural hospitals in Georgia to a comparable set of control

hospitals drawn from other southeastern states.2 To select control hospitals, I identify the

set of hospitals in each state that would be eligible to receive RHTC subsidies if an analogous

program were to exist in their state. Table A3 shows 2016 summary statistics for treated

and control hospitals. Both are similar in size and baseline financial health.

Yht =
∑
k ̸=−1

βk GAh ·Dhkt + λt + µh + ϵht (1)

To avoid bias from the staggered rollout of the subsidy, I estimate the event study model

using the imputation estimator proposed by Borusyak et al. (2024). In equation 1, outcome

Yht is an indicator for whether hospital h offered 3DM in year t. Relative time variable

Dhkt spans three years before and after h first receives subsidy funds. Standard errors are

clustered at the hospital level.

2Including: Alabama, Florida, Mississippi, North Carolina, South Carolina, and Tennessee. Georgia did
not expand Medicaid during this period, so I limit my sample to other non-expansion states.
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Figure 2: Effects of Subsidization on 3DM Supply

Panel A: Cumulative Adoption Probability
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Notes: This figure in panel A shows event study estimates for the 3DM investment outcome. This
model is estimated using radiology equipment installation records from 2014–2019 for RHTC hospitals
(N = 58) and a group of rural hospitals in other southern states (N = 95), creating a total of 918
hospital-year observations. Relative year zero corresponds to 2017, the first year Georgia hospitals
received subsidy funds. All estimates are relative to the year preceding the first receipt of the subsidy.
I cluster standard errors at the hospital level. The coefficient plots in panel B show estimated differences
in mean characteristics between rural hospitals offering 3DM in GA vs control states in 2016 and 2019.
Source: FDA / HCRIS.

Coefficients βk measure the change in the cumulative probability of 3DM adoption relative

to the year before initial subsidy receipt. The estimates are plotted in Panel A of Figure

2 and show no distinguishable difference in adoption trends between these groups across

the pre-periods. However, post-period estimates reflect a sharp break in trend across the

groups. Over the first three years of the policy, I estimate that subsidization increased the

cumulative probability of adoption by approximately 20 percentage points. This estimate is

both statistically and economically significant, representing a 140% increase relative to the

pre-treatment mean.

Panel B of Figure 2 reports coefficients from differences-in-means tests comparing char-

acteristics between rural hospitals offering 3DM in Georgia and control states. In 2016,

the two groups were statistically similar in size, financial structure, and facility age. How-

ever, by 2019, the group of rural hospitals offering 3DM in Georgia was on average smaller,

with fewer financial resources, suggesting that the subsidy enabled adoption at resource-

constrained hospitals.
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3.3 The Effect of Adoption on Local Screening Patterns

I exploit the staggered timing of 3DM adoption at rural hospitals to measure the effect

of distance to 3DM on rural patients’ screening decisions. To quantify the relationship be-

tween local access and screening patterns, I use screening records from all Georgia patients

whose nearest mammography provider is an RHTC hospital over the four-year period from

2016–2019. My analysis exploits changes in patients’ access to 3DM following its adoption at

subsidized rural hospitals. I construct a time-varying, zip code-level measure of local access

based on relative distance to 3DM. Specifically, I define local access as a binary indicator

equal to one for zip code z in period t if 3DM is offered at the mammography provider

nearest z. To precisely measure changes in access over time, I define calendar time periods

in 6-month intervals. I supplement these results in Appendix B.2, which considers the effect

of changes in absolute distance.

To measure changes following the adoption of 3DM, I estimate the event study regression:

Yzt =
∑
k ̸=−1

ϕk · 1(t− ez = k) + λt + µz + ϵzt (2)

where Yzt is the zip code’s screening volume, measured separately for each technology

type. Treatment begins during the event period, ez, when 3DM becomes available at the

provider nearest zip code z. Equation 2 is estimated using the imputation method pro-

posed by Borusyak et al. (2024). To avoid compositional bias, I estimate the event study

model using the set of treated zip codes for which I observe at least 18 months of pre- and

post-adoption data. The final sample comprises 78 treated zip codes that gain local access

and 94 control zip codes that do not gain local access during my sample period. Treatment

effects ϕk are identified through variation within and across zip codes over time. Identifica-

tion hinges on the assumption that the timing of adoption is exogenous to short-run shocks

in local screening demand. Under this assumption, the counterfactual trends of zip codes

with different degrees of access to 3DM would have evolved in parallel so that ϕk captures

the average effect of treatment. I evaluate the plausibility of this assumption by testing for

differences in pre-trends across groups.

Figure 3 presents ϕk estimates from Equation 2. Panel A illustrates the estimated effect

of local 3DM access on zip code-level screening volumes for both 2DM and 3DM. The flat

pre-trends for both outcomes provide plausible support for the parallel trends assumption.
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Figure 3: Effects of Gaining Local Access to 3DM on Screening Patterns

Panel A: Screenings by Technology Type
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Notes: This figure shows estimates from model 2. Panel A shows estimated relative time
coefficients for zip code screening volume across 2DM and 3DM. The respective means in
relative period -1 are 2DM=210 and 3DM=38. Panel B shows estimates for overall screening
counts. Each model is estimated using the sample of 172 rural zip codes from 2016–2019.
Standard errors are clustered at the zip code level.
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Post-treatment, I estimate a sharp increase in 3DM utilization. By relative period 2, the

average 3DM volume increased by 110 scans in treated zip codes, representing a relative in-

crease of 289% relative to the pre-treatment mean of 38. These estimates imply that treated

zip codes experienced a 45 percentage point increase in the conditional probability of 3DM

screening. The rise in 3DM utilization is mirrored by a decrease of similar magnitude in

2DM utilization, suggesting that the local availability of 3DM prompts patients to substi-

tute between screening technologies, rather than encouraging individuals who previously did

not screen to begin screening. Estimates in Panel B, which show the effect of adoption on

total breast cancer screening counts, are statistically indistinguishable from zero and small

across the entire period. Together, these outcomes show strong evidence that local access to

3DM primarily drives a shift in the choice of screening technology.

Panel C of Figure 3 includes level estimates of 3DM volume at adopting hospitals, which

show that nearly all of the increase in 3DM utilization is attributable to screenings at adopt-

ing hospitals. Moreover, Panel D of Figure 3 shows that adopters experience a decline in

2DM volume that is similar in magnitude to the total zip code level estimates, suggesting

that most patients who screen with 3DM in the post-adoption period are substituting from

2DM to 3DM at their local hospital.

Next, I consider how these effects vary across patient characteristics. Figure 4 plots es-

timates from Equation 2 using the share of screenings performed with 3DM as the outcome

variable. I find that the 3DM share increases more for non-white patients and patients in-

sured by Medicaid or uninsured. This suggests that lowering travel barriers to 3DM may

have a greater impact on access for minority groups with lower socioeconomic status. Con-

versely, I estimate a smaller change in the share of 3DM screenings among women with a

family history of breast cancer. The effects of increased access are muted for this group of

women with observably higher health risk because they were more likely to travel to access

3DM before it became locally available. Panel D highlights heterogeneity across patient age

by estimating the model for the subgroups of patients above and below 55 years old. I select

this age threshold because empirical evidence shows that 3DM leads to a larger reduction in

recall rates among younger patients (Conant et al., 2019; Sharpe et al., 2016). I find that

substitution patterns evolve similarly in both groups.
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Figure 4: Heterogeneity in Response to Local 3DM Access

Panel A: Patient Race
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Panel C: Family History of Breast Cancer
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Panel D: Patient Age
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Notes: This figure plots event study estimates using the conditional share of patients choosing
3DM in a given zip code as the outcome variable. Each Panel highlights heterogeneity in the effect
of gaining local access to 3DM on screening patterns across patient characteristics. Standard
Errors are clustered at the zip code level.
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3.4 Technology Choice and Screening Outcomes

I use variation from the adoption of 3DM to estimate the effect of technology choice on

the probability of false-positive screening results. For this analysis, I leverage individual data

from the same balanced sample of rural zip codes to estimate the linear probability model:

False
(+)
it = ρ 3DMit + λt + µz + ϵizt (3)

Where 3DMit is an indicator equal to one if i screened with 3DM at time t. The out-

come variable False
(+)
it is an indicator for i being recalled for a follow-up scan that does not

result in a cancer diagnosis.3 Zip code and period fixed effects account for time-invariant

differences in false-positive recall rates across localities, in addition to common changes in

the prevalence of false positives over time.

Table 2: Effect of 3DM screening on False-Positive Rates

OLS IV
Sample
Mean

(1) (2) (3)

Panel A: False-Positive Rate

Screened with 3DM −0.034∗∗∗ −0.018∗∗
0.084

(0.002) (0.003)

Panel B: 3DM Screening Rate

Local Access 0.263∗∗∗
0.275

(0.068)

Zip Code FE Y Y
Period FE Y Y
First Stage: F -Stat - 43.3
Observations 250,244 250,244 250,244

Notes: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01,. Panel A presents the
effect of 3DM utilization on the probability of a false-positive test
result. Column 1 reports the estimate from OLS, while Column
2 reports the estimates from an IV where local access is used as
an instrument for technology choice. Panel B presents the results
from the first-stage model. Column 3 shows mean outcomes for
the dependent variables in each panel. Standard errors are clus-
tered at the zip code level.

3I use patient identifiers to link diagnostic follow-ups to initial screening encounters. I restrict attention
to the set of follow-up scans that occur within 6 months of an observed screening. I rely on ICD diagnosis
codes to determine the result of a diagnostic test.

16



However, unobserved risk factors ϵizt may be correlated with a patient’s decision to screen

with 3DM. To address this endogeneity, I use changes in geographic access to 3DM to instru-

ment for technology choice. Building on the approach from Section 3.3, I leverage variation

in local access to 3DM following the adoption of the technology at subsidized rural hospitals.

By conditioning on zip code and period effects in the first stage, this instrument isolates the

variation in 3DM take-up resulting from adoption.

Panel B of Table 2 shows the results from the first stage regression. The model has

an F -statistic of 43.3, suggesting that changes in local access to 3DM provide a relevant

instrument. Panel A of Table 2 reports estimates of the effect of 3DM use on the probability

of a false-positive. The OLS estimate in Column 1 shows that 3DM use is associated with

a 3.4 percentage point decrease in the probability of a false-positive screening result. The

estimate from the IV shows a smaller decrease of 1.8 percentage points. This local average

treatment effect is similar in magnitude to estimates from the previous literature, reflecting

a 21% reduction relative to the sample mean.4

4 Demand Model

4.1 Demand Specification

I model a woman’s choice of breast cancer screening provider technology as a differenti-

ated product discrete choice problem. The utility that patient i in market m and period t

receives from choosing technology s at hospital j is given by:

Uijsmt = δjsmt + µijsmt︸ ︷︷ ︸
Vijsmt

+ϵijsmt (4)

where δjsmt is the mean utility that patients gain from a provider technology couple, js. These

product fixed effects capture average preferences over hospitals and technologies, absorbing

systematic differences in perceived quality. The idiosyncratic terms, µijsmt + ϵijsmt, capture

individual-specific variation from mean utility.

I specify µijsmt as:

µijsmt = γ1 dij + γ2 d
2
ij +

C∑
c=1

κc(dij ∗ Zic︸︷︷︸
Demographics

) + α11(Previjst = 1) (5)

4Kerlikowske et al. (2022) find a 20% reduction from a baseline false-positive rate of 0.08 while Skaane
et al. (2013) report a 15% reduction from an initial rate of 0.06.

17



where dij, patient i’s round trip travel distance to provider j, enters utility linearly and

nonlinearly. To capture heterogeneity in travel cost, I interact distance with Zic, a vector

of observable patient characteristics, including race, an indicator for Medicaid or self-pay

insurance status, and an indicator for family history of breast cancer. I include an indicator

denoting whether i’s last scan was with technology s at hospital j to capture inertia in pa-

tients’ choices across time.5

I parameterize option mean utility δjsmt as:

δjsmt = β3D 3DMjsmt + ξj︸︷︷︸
Hospital FE

+ ξmt︸︷︷︸
Marktet×Period FE

+ ∆ξjsmt︸ ︷︷ ︸
Unobserved
Taste Shock

(6)

where 3DMjsmt is an indicator for 3DM-technology so that parameter β3D reflects the addi-

tional utility gained from a 3DM screening. I include fixed effects ξj to capture unobserved

hospital quality and ξmt to capture time-varying market demand shocks. The remaining un-

observed component ∆ξjsmt reflects hospital-service specific deviations in unobserved taste

over time.

I do not model the choice to delay or forgo screening and thus assume the market size is

equal to the total number of patients receiving scans. I choose to model this limited form of

substitution because my model relies on variation resulting from changes in access to higher-

quality services. While some patients do in fact choose to delay recommended screenings,

I do not find evidence that this behavior is impacted by changes in local access to 3DM.6

Assuming ϵijsmt follows a type one extreme value distribution, the individual probability of

patient i in market m and period t choosing service s at hospital j can be written:

sijsmt =
exp(δjsmt + µijsmt)∑
j,s exp(δjsmt + µijsmt)

(7)

4.2 Estimation and Identification

Sample and Market Selection: I estimate the model for Georgia hospitals that offer

either 2DM or 3DM from 2016–2019. This includes 40 rural hospitals and 39 non-rural

hospitals. To highlight the impact of changes in access to higher quality diagnostic care, I

also limit this adoption sample to hospitals that offered 2DM services by the start of the

5I use data from 2014–2019 to define this variable, which ensures adequate coverage for my primary
sample window 2016–2019.

6Appendix B.3 shows a null relationship between local screening compliance and 3DM adoption.
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sample period.7 Finally, I require that hospitals consistently report discharge data across

each period from 2016–2019. The sample includes 18 rural adopters or 81% of all subsidized

Georgia hospitals who adopt 3DM from 2017-2019.

Markets are constructed based on the Georgia Department of Community Health’s de-

fined state health planning regions. These designated regions encompass approximately 10

counties, with an average of seven mammography providers operating within each region.

The providers located within these defined markets administer 92% of all screenings received

by patients within the market. I normalize the utility of screening with an out-of-market

provider to zero. The health planning region corresponding to the Atlanta metro area is

excluded from this analysis since it does not contain any subsidized rural hospitals.8 The

final sample includes a total of 79 hospitals with each operating in one of twelve unique

markets.

Estimation: I estimate the model’s parameters using a two-stage maximum likelihood pro-

cedure. Following Goolsbee and Petrin (2004), I estimate the idiosyncratic taste parameters

θ=(γ, κc, α) in the first stage by maximizing the log-likelihood function (8). Where Ii,j,s,m,t

is an indicator for patient i in market m at time t choosing to screen at hospital j with

technology s. Conditional on any candidate value of θ, I solve for the vector of option mean

utilities, δ̂jsmt(θ), such that the observed market shares match those predicted by the model

(Berry, 1994).

LL(θ) =
∑

i,j,s,m,t

Ii,j,s,m,t · log

(
sijsmt(θ)∑
j,s sijsmt(θ)

)
(8)

Travel cost sensitivity is identified by patients’ substitution between local and more dis-

tant providers. An additional source of identification stems from variation in the timing

of 3DM adoption at the local rural hospital, which changes the minimum distance to 3DM

over time. This helps separate preferences for screening modalities and hospitals from travel

sensitivity. Using patient identifiers to link patients’ choices over time, α is identified by the

tendency for patients to revisit the provider where they received their last scan. By account-

ing for switching cost, I can distinguish patients’ preferences for local 3DM from preferences

for familiar providers.

7This only excludes two adopting hospitals.
8Additionally, travel costs in this market may not be reflective of the broader state due to traffic patterns

and the availability of public transit.
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After recovering mean utilities, at the optimal values of θ∗, I estimate the technology

preference parameter β3D in a second stage linear regression:

δ̂jsmt(θ
∗) = β3D 3DMjmst + ξj + ξmt +∆ξjsmt (9)

Hospital fixed effects ξj absorb all time-invariant differences across hospitals while market-

by-period fixed effects ξmt control for common shocks that affect all hospitals in a given mar-

ket, such as changes in insurance coverage, screening campaigns, or demographic trends. The

remaining variation that identifies β3D comes from within-hospital changes in mean utility

when a hospital begins offering 3DM, relative to other hospitals in the same market-year that

have not yet adopted the technology. Consequently, β3D captures the average incremental

effect of 3DM availability on patient utility, net of average preferences over providers and

market-wide demand fluctuations.

However, if the adoption of 3DM is influenced by latent demand shocks, ∆ξjsmt, then

the estimates from equation 9 will be biased. To address this endogeneity concern, I employ

an instrumental variables approach that exploits quasi-experimental variation from the dis-

bursement of RHTC subsidies, which are targeted at financially constrained rural hospitals.

These funds facilitated the adoption of 3DM equipment but are likely unrelated to contempo-

raneous local demand shocks after controlling for hospital and market-by-year fixed effects.

Specifically, I use the disbursement of subsidies as an instrument for technology availability.

This strategy isolates plausibly exogenous shifts in the propensity to adopt 3DM driven by

subsidy timing and eligibility, rather than by endogenous responses to rising demand. Under

the exclusion restriction that the subsidy affects patient utility only through its effect on

3DM availability, the IV estimates recover patients’ taste for 3DM technology. Importantly,

this IV estimate should be interpreted as a local average treatment effect reflecting the im-

pact of 3DM adoption among the subset of marginal, financially constrained hospitals whose

investment decisions were influenced by the subsidy.

5 Results

5.1 Preference Estimates

Results from the maximum likelihood stage of estimation are reported in Panel A of Ta-

ble 3. I find that distance is an important factor in patients’ screening decisions. A ten-mile
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increase in round-trip distance decreases utility by -0.668. To highlight the effect of distance

on screening technology choice, Column 2A reports the average marginal effect of a ten-mile

increase in travel distance to the nearest 3DM provider on the probability of 3DM screening.

Following this marginal change, I estimate a 6.37 percentage point decrease in the probability

of 3DM utilization. Consistent with the results from Figure 4, non-white patients who are

insured by Medicaid or uninsured are more sensitive to distance. As a result, the marginal

increase in distance to 3DM reduces their likelihood of 3DM utilization by an additional 1.4

percentage points, a 25% increase above the baseline estimate. Conversely, patients with a

family history of breast cancer are less sensitive to changes in travel distance. I find that

patients have a strong preference for familiar providers, estimating an inertia coefficient of

3.2.

Panel B of Table 3 presents the results from the second-stage estimation procedure, which

recovers preferences for screening technology. The estimates from the naive Ordinary Least

Squares (OLS) regression are reported alongside the results from the two-stage least squares

(2SLS) procedure. The instrument for 3DM availability demonstrates a strong first stage,

satisfying the relevance criteria with an F-statistic of 36.6, indicating that the policy created

meaningful variation in the availability of 3DM. The larger point estimates for β3D in Column

1B suggest that the OLS model likely overstates patients’ preferences for 3DM. The adjusted

estimate in Column 2B is equal to 1.93. This reflects a strong average preference for 3DM

screening, indicating that patients are willing to travel an additional 30 miles round-trip to

access 3DM, given the estimated costs of travel.

5.2 Substitution Patterns and Patient Welfare

To quantify the effect of adoption on rural 3DM take-up, I use the model to construct

choice removal diversion ratios. These diversion estimates predict patient demand in a

counterfactual where 3DM is not available at the rural adopter. Denoting the option to

screen with 3DM at a given rural adopter as k3D and omitting market and time notation for

brevity, equation 10 gives the probability that patient i would be diverted to a given hospital

screening alternative, js, if k3D were removed from the choice set.

Di(k3D → js) =
(ŝijs)

(1− ŝik 3D)
(10)
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Table 3: Choice Model Estimates

Parameter Estimate AME

Panel A: (1A) (2A)

Maximum Likelihood Estimation

α1 (Inertia) 3.238
(0.004)

γ1 Round Trip Distance (10 mi) -0.668

-0.063
(0.001)

γ2 Distance Squared 0.009
(0.000)

Distance Interactions

κrace (Non-White) -0.0741 -0.008
(0.001)

κins (Medicaid/ Self-Pay) -0.051 -0.006
(0.004)

κh (Family-History) 0.084 0.009
(0.001)

Screening Observations 1,192,078

Panel B: (1B) (2B)

Technology Preference Estimates OLS 2SLS

β3D 2.292∗∗∗ 1.93∗∗

(0.441) (0.788)

Hospital FE: Y Y
Market×Period FE: Y Y

Hospital-Year Observations 1041 1041
First Stage F-stat 36.60

Notes: Panel A shows results of the logit choice model. Utility parameter
estimates are shown in column 1A. Standard errors shown in parentheses.
Column 2A reports the average marginal effects of a 10-mile increase in
relative distance to 3DM on the probability of 3DM screening. The model
is estimated using 1,192,078 unique screening observations from 2016–2019.
Panel B reports the results from the regression that decomposes the effect
of 3DM technology on mean utility. Column 1B reports the OLS estimates
where the independent variable is a binary indicator for 3D. Column 2B
shows the results from the 2SLS estimator where the subsidy is used as an
instrument for 3DM availability.
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Aggregating the set of alternative 3DM providers in a patient’s choice set, I use equation

11 to measure how technology diffusion at subsidized rural hospitals impacted the likelihood

of 3DM utilization. ∆Pi(3D) gives the probability that patient i substitutes from 2DM to

3DM.

∆Pi(3D) = 1−
∑
j3D∈J

Di(k3D → j3D) (11)

The left plot of Figure 5 illustrates the effect of the adoption of 3DM utilization among

patients who gain local access to 3DM. The solid black trend represents the average predicted

probability of screening with 3DM at the rural adopter across ∆Distance, which is the change

in a patient’s minimum distance to 3DM post-adoption.

Figure 5: Technology Substitution and Consumer Surplus Gains Across Distance
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Notes: This left plot shows average predicted probabilities from the model against reductions in travel
distance. The black trend represents the predicted probability of screening with 3DM at the adopting
hospital, while the gray trend reflects the total predicted change in probability of any 3DM screening.
The right plot shows average consumer surplus gains from local 3DM adoption in black and the ad-
ditional positive spillover attributable to reduced downstream costs from false-positive screenings in
gray.

The trend increases across distance bins, suggesting that patients are more likely to choose

3DM at adopting hospitals when distances to alternative 3DM providers are large. For ex-

ample, at the first distance bin, where adoption reduced distance to 3DM by less than 5

miles, the model predicts that 45% of patients will screen with 3DM at the adopting hospi-

tal, compared to 70% of patients at the furthest distance bin. The dotted trend line reflects

the overall change in the predicted probability of 3DM screening from equation 11. The

space between these trends demonstrates the degree of inframarginal substitution (between
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providers) versus marginal substitution (between technologies). The model predicts that

adoption increased the probability of 3DM screening by 30 percentage points at the first

distance bin. The sizable gap between the trends at this point implies that, in the absence

of adoption, 15 percent of patients would still have been screened with 3DM. Conversely,

at the furthest distance bin, the predicted increase in the probability of 3DM screening

is 65 percentage points, suggesting that nearly all of the demand for local 3DM is driven

by substitution from 2DM. Intuitively, the screening decisions of patients who are further

isolated from alternative 3DM providers are more responsive to adoption at the local hospital.

Next, I use the model to quantify the value patients in rural Georgia place on local ac-

cess to 3DM. I use revealed preference estimates to calculate patients’ willingness to pay for

local access to 3DM. Equation 12 provides the change in travel miles required to compensate

patient i for the expected utility loss between choice set J and J ′, excluding 3DM at the

adopting rural hospital. Scaling the expected utility loss by the marginal utility of distance,

CVi(J, J
′), gives a travel-denominated measure of the average value patients place on 3DM

at rural hospital k. I monetize this metric at a rate of $0.77 per-mile to determine each

patient’s willingness to pay for local access to 3DM.9

CVi(J, J
′) =

1
∂Ui

∂d

{
ln

(∑
j,s∈J

exp(Vijs)

)
− ln

(∑
j,s∈J ′

exp(Vijs)

)}
(12)

The solid line in the right plot of Figure 5 represents the average patient’s willingness

to pay for local 3DM across post-adoption changes in distance. I find a strong linear rela-

tionship between remoteness and willingness to pay. These values reflect the direct benefits

attributable to increased product variety.

However, because 3DM screenings are less likely to yield false-positive results, their adop-

tion reduces the expected and downstream costs of unnecessary follow-up screenings. Thus,

consumer surplus estimates likely understate the marginal social value of local 3DM. To re-

flect the positive spillover from technology substitution, I calculate the expected reduction in

health care spending per marginal 3DM screening. I set the social cost of a false-positive at

$211.21, the 2019 Medicare reimbursement rate for a diagnostic scan. Combining this with

the 1.8 percentage point reduction in the probability of a false-positive result from section

3 gives an expected savings of $3.8 per marginal 3DM screening. The dotted gray trend in

9This value is based on the IRS’s reimbursement rate for a mile of travel in 2017 $0.53 times 1.417 driving
miles per straight-line mile (Boscoe et al., 2012).
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the right plot of Figure 5 illustrates the average incremental gain from this positive spillover.

The divergence between the trends at points further along the x-axis reflects the fact that

technology substitution is more prevalent when prior access to 3DM is lower.

Figure 6: Technology Substitution Across Distance Bins by Patient Characteristics
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Notes: Panels show the predicted change in 3DM utilization after local adoption by patient
subgroup. Each panel plots average percentage changes in the probability of 3DM screening across
differential-distance bins. Estimates come from the structural demand model, which incorporates
travel costs and heterogeneous preferences by insurance status, race, and family history of breast
cancer.
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Finally, Figure 6 highlights heterogeneity across patient types by plotting the average per-

centage change in the predicted probability of 3DM use across distance bins for subgroups

of patients with different observable characteristics. Panel A shows this relationship for pa-

tients based on insurance status. Across each distance bin, the model predicts that adoption

will increase the probability of screening more for self-pay and Medicaid patients. A similar

pattern is observed in Panel B, where non-white patients experience a larger increase in the

likelihood of 3DM uptake. Notably, the gaps between subgroups are pronounced at the first

distance bin, suggesting that smaller absolute travel burdens have a more salient impact on

non-white patients of lower socioeconomic status. Panel C plots the same relationship based

on whether patients have a family history of breast cancer. Consistent with the reduced

form estimate, the model predicts that women with a family history of breast cancer are less

responsive to distance when making screening decisions.

5.3 Hospital Profits

In this section, I present a simple framework for quantifying the profits hospitals earn

from 3DM adoption. I model this market in partial equilibrium, where the decision of subsi-

dized hospitals to adopt 3DM is taken as given. I employ a data-driven approach to analyzing

the supply side of this market, using estimates from CMS’s Practitioners Expense file to cal-

ibrate the marginal cost of screening and the fixed cost of 3DM adoption. By abstracting

away from the endogenous decision to invest subsidy funds in 3DM my model cannot ac-

count for differences in adoption decisions across subsidized hospitals. These simplifications

mean that my results and subsequent analyses should be interpreted as the likely effect of

subsidizing 3DM investment at rural hospitals that would choose to adopt the technology

if they had more resources. However, even with these caveats, the results of this model are

representative of the economic trade-offs to facilitating adoption at rural hospitals hampered

by financing constraints, and thus are informative across many policy contexts.

To offer 3DM, hospitals must pay an upfront investment cost of F . This includes the

price of a 3DM scanner, as well as the cost of 3D image interpretation software. The marginal

costs of screening include the costs of radiologists’ and technicians’ labor in addition to data

storage costs. I calibrate these costs using line-item estimates from CMS’s Practitioners’

Expense file from 2017–2019. According to these estimates, the upfront cost of 3DM totals

$380,000. The respective procedure costs of 3DM and 2DM are reported to be $52.9 and

$39.2. The difference between these estimates is due to the additional time required to per-

form a 3DM screening and the increased data storage requirements. Given the limitations of
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my data, I assume that the fixed and marginal costs of screening are constant across hospitals.

The assumption of constant fixed cost may be a reasonable approximation in this setting.

Over this time period, the market for 3DM units was dominated by GE and Hologic, whose

Pristina and Dimensions models had a combined market share of 80% (CSI Market, 2025).

Additionally, hospitals that upgraded likely purchased 3DM units directly from manufac-

turers, as the resale market for 3DM units was relatively thin at this stage. Conversely,

the assumption of procedure costs across hospitals is more difficult to justify. Ex-ante, it

is unclear how procedure costs might vary in a rural setting. Because rural hospitals have

smaller patient volumes, radiologists and technicians may have less experience, which can

lead to less efficient patient processing. On the other hand, previous work has shown that

the variable cost of outpatient care is a convex function of volume because congestion raises

the cost of treating marginal patients (Eliason, 2022). To ensure that my results are robust,

I report profit estimates across a range of potential 3DM cost structures.

Hospitals receive a negotiated reimbursement rate for mammography screenings. Reim-

bursements for 3DM are more generous, with public insurers paying an additional $57.75 for

screenings performed with 3DM. I allow procedure reimbursements ps to vary based on a

patient’s reported insurance status, but assume they are constant across hospitals. While the

rates negotiated by private payers likely vary across hospitals, more than half of my sample

is insured by traditional Medicare, which pays a fixed reimbursement rate to all hospitals.

Additional details on the calculation of rates are reported in Table A6.

When a hospital adopts 3DM, the return on investment will depend on the difference

in procedure reimbursement rates ∆ps = (p3D − p2D), marginal costs ∆cs = (c3D − c2D),

fixed costs F , and patient substitution patterns. Combining these cost and reimbursement

estimates with the substitution patterns predicted by the demand model, I express the

expected change in screening profit for any subsidized adopter k as:

∆πk =
∑
t

∑
i

βt(Di(k3D → k2D)︸ ︷︷ ︸
Substitution Within

Provider

· (∆pis−∆cs)+(1−Di(k3D → k2D))︸ ︷︷ ︸
Substitution Across

Providers

·(pi 3D−c3D)− Ft)︸︷︷︸
Period

Fixed-cost

(13)

The sum is taken over all patients i who choose to screen with 3DM at hospital k across

the observed post-adoption period. The incremental change in profit depends on substitution

patterns in the counterfactual where adoption does not occur. If a patient had chosen to

screen with 2DM at k, the hospital’s change in variable profit is the additional reimbursement

for 3DM net of the change in procedure costs (∆pis−∆cs). Alternatively, k earns (pi 3D−c3D)
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when patients substitute across screening providers. To reflect this, I use diversion estimates

to quantify the probability that i substitutes between technologies at the adopting hospital

Di(k3D → k2D). Fixed costs are amortized and scaled based on the useful life of a 3DM

scanner, which varies between 5 and 10 years (CMS, 2016; Hodges and Doyle, 2023; Stuffins

et al., 2022). A hospital’s private return to 3DM adoption is the sum of increased variable

profit net of accrued fixed cost Ft. Hospitals are assumed to discount the sum of future

profits at an annual rate of 3%.

Table 4: Distribution of Profits at Rural Adopters

(1) (2) (3)
∆πk ROI ∆πk ROI ∆πk ROI

Median 41,634 0.18 75,221 0.52 110,504 0.96

First Quartile -8,546 -0.037 10,835 0.076 29,314 0.26

Third Quartile 89,205 0.39 115,593 0.81 169,034 1.48

Useful Life 5-years 8-years 10-years

∆cs 20.5 13.7 6.85

Notes: This table shows the estimated effect of adoption on the profits hospi-
tals earn from mammography screenings. Columns report both the level of profit
across the distribution of adopting hospitals and the scaled return on fixed invest-
ment. Each column varies the assumptions on the useful life of a 3DM scanner
and the marginal cost of 3DM.

Table 4 reports the distribution of profits earned by rural 3DM adopters. I test the

sensitivity of these results to my assumptions on fixed and marginal costs across columns.

Column 1, reports expected private returns assuming that the useful life of a scanner is

5 years and the incremental procedure cost of 3DM is 1.5 times the value reported in the

Practice Expense File. Even under these conservative assumptions, the median hospital

earns a positive profit from its investment in 3DM. Hospitals in the top quartile of the profit

distribution see a large return on 3DM investment, earning an additional $0.40 of net profit

for every dollar of fixed investment. Hospitals in the bottom quartile earn negative profits

under this specification; however, profits are positive for this group under less restrictive

cost assumptions, as reported in columns 2 and 3.10 Overall, I find that the marginal rural

adopter earns substantial profits from 3DM investment. Given the profitability of this service

line, its adoption was notably rare among rural hospitals before the subsidy. This suggests

10In subsequent analyses, I use the estimates of costs reported in column 2, which map directly to the
values reported in the Practice Expense Estimates.
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that financial frictions prevent rural hospitals from investing in profitable services. Thus, by

allowing rural hospitals to access more lucrative reimbursements, technology diffusion can

increase the financial stability of low-margin rural hospitals.

6 Welfare Effects and Counterfactual Simulations

6.1 Social Welfare

∆TS0
k =

∑
i

∑
t

βt( ∆CSit︸ ︷︷ ︸
Revealed
Preference

− ∆cit︸︷︷︸
Marginal
Resource

Cost

− Ft︸︷︷︸
Period

Fixed-cost

) (14)

I perform a simple back-of-the-envelope calculation to measure the welfare effects of 3DM

diffusion in rural markets. Equation 14 quantifies the baseline change in social welfare per

screening due to the availability of 3DM at a given rural hospital k. This expression is derived

under the standard assumption that profit transfers between firms are welfare-neutral. As a

result, any profits k earns from adoption are offset by profit losses at competing hospitals and

insurers. A complete derivation is provided in section B.4. Revealed preference is derived as

i’s willingness to pay for 3DM at the adopting hospital. To calculate the expected change

in marginal resource costs, I use the procedure cost difference reported in the Practice Ex-

pense file, ∆cs, weighted by the probability of technology substitution ∆Pi(3D). Assuming

a discount rate of 3 percent over a useful equipment life of 8 years gives a per-period fixed

cost, Ft, of $23,800.

∆TS1
k = ∆TS0

k︸ ︷︷ ︸
Baseline

+
∑
i

∑
t

βt( ρ̂ ·∆Pi(3D) · R(Diagnostic)︸ ︷︷ ︸
Downstream

savings

+ ηSV ·∆πk
it︸ ︷︷ ︸

Profit transfers

) (15)

Equation 15 incorporates the potential positive spillovers associated with 3DM adoption.

Since 3DM screenings are less likely to yield false-positive results, technology substitution

has the potential to lower downstream costs by reducing the incidence of unnecessary follow-

up screenings. To calculate the expected reduction in health care spending, I weight the

Medicare reimbursement rate for a follow-up diagnostic scan, R(Diagnostic)=$211.21, by
the estimated false positive reduction rate ρ interacted with the probability that i substi-
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tutes across technologies ∆Pi(3D).

Finally, ηSV reflects the social value of screening profits at adopting rural hospitals, where

ηSV > 0 relaxes the assumption that profit transfers between firms are welfare neutral. I

calibrate this parameter using data on supplemental payments received by Georgia hospitals

under the Medicaid Disproportionate Share Hospital (DSH) program, which reimburses hos-

pitals for a portion of the financial losses incurred from providing care to indigent patients

(Dranove et al., 2022). States have broad discretion in how they distribute these supple-

mental payments, often distributing funds based on hospitals’ underlying financial health

to mitigate the risk of closure. In 2016, rural hospitals meeting the criteria for the RHTC

program received an additional $0.19 in DSH payments for every dollar of uncompensated

care, implying that the state of Georgia places a higher weight on their financial health. To

reflect this preference, I set ηSV = 0.19.

6.2 Counterfactual Simulations

I perform counterfactual exercises, using my model to simulate the effect of alternative

distributions of rural 3DM supply from 2017-2019. In this analysis, I consider the set of 33

rural Georgia hospitals that had not adopted 3DM before the enactment of the subsidy pro-

gram. This sample of potential rural adopters includes the 18 rural hospitals that actually

adopted 3DM after receiving subsidies, as well as the 15 never-adopters that only offered

2DM from 2016–2019. I simulate counterfactual demand for 3DM at the never adopters us-

ing my technology preference estimates to predict service mean utilities via Equation 6. To

address concerns that non-adopters may have lower latent demand, I draw values of ∆ξjsmt

from the bottom 10th percentile of the empirical distribution. For each counterfactual pe-

riod, I draw 200 shock values for each non-adopter to compute the corresponding logit choice

probabilities and report final counterfactual demand and welfare estimates as averages across

the 200 simulation draws.

The left plot of Figure 7 shows the welfare effects of rural 3DM adoption across char-

acteristic space. The y-axis represents the screening-eligible Hospital Service Area (HSA)

population, which serves as a proxy for potential market size. The x-axis shows the dis-

tance between the adopting hospitals and the nearest incumbent 3DM provider, a proxy for

horizontal differentiation. Both axes are normalized by z-scores. I plot the welfare effect

of each adoption, with the color of each bubble reflecting whether the change in total sur-
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plus was positive (dark bubbles) or negative (transparent bubbles). The size of each bubble

corresponds to the absolute value of the adoption’s impact on total surplus. There is a

clear concentration of welfare-negative adoptions in the left region of the plot, where rural

adopters are relatively close to incumbent 3DM providers. Conversely, hospitals with low

potential market sizes are also more likely to reduce social welfare since screening volumes

are insufficient to justify the significant fixed cost of 3DM upgrades.

Figure 7: Welfare Effects Across Market Characteristics.
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Notes: Each bubble represents a rural Georgia hospital in counterfactual adoption simula-
tions. Bubble size is proportional to the absolute welfare effect, with color indicating sign
(dark = positive, light = negative).

These patterns reflect the underlying trade-off between access and cost efficiency in ru-

ral health care markets. The right plot of Figure 7 illustrates this trade-off by tracing an

iso-welfare frontier across distance–population space. This boundary approximates the com-

binations of distance and market size for which the incremental welfare effect of adoption

is constant. Thus, its convex slope represents the marginal rate of substitution between

remoteness and market size. The shape of this curve reflects the fact that the social value

of adoption increases with both market size and distance, but at a diminishing rate. As

a result, gains from adoption are concentrated among hospitals that are simultaneously far

enough from incumbents and large enough in potential patient volume. This relationship be-

tween welfare and market characteristics suggests that allocation mechanisms that account

for remoteness and potential market size can more efficiently direct funds to hospitals where
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welfare gains from adoption are largest.

I use my model to simulate demand for breast cancer screenings in rural Georgia under

alternative distributions of rural 3DM supply. First, I calculate the welfare effects of the

observed 3DM upgrades at subsidized rural hospitals. I then use the model to calculate the

effect of a blanket investment approach, where all rural hospitals in Georgia offer 3DM. Next,

I solve for the optimal allocation of 3DM by simulating all combinations of 3DM adoption

to find the set of rural 3DM providers that maximize social welfare. Finally, I consider

selective allocation rules that limit 3DM adoption to hospitals above the 25th percentile of

the distance or market size distributions, as well as a two-part criterion combining a 25th

percentile distance cutoff with a 25th percentile market size cutoff.

Table 5 summarizes the effects of each counterfactual allocation on total surplus. Col-

umn A reports the effects of adoption among the hospitals in the observed sample, where

A0 reports the welfare effects under the baseline specification and A1 includes the potential

spillovers. Under either specification, the net welfare effect of adoption across this observed

sample of 18 adopters is positive, ranging from ($761,000–$1,104,000). However, there is

substantial heterogeneity in these effects across hospitals. Under the baseline specification,

44% of adoptions reduce welfare.

Column B reports the effect of universal 3DM adoption. This allocation is poorly tar-

geted. Under this blanket approach, two-thirds of adoptions have a negative effect on welfare.

On net, these 33 adoptions reduce total surplus. In this counterfactual, the average patient

values local 3DM at $5.2, suggesting that the variety gains from adoption are muted rela-

tive to alternative allocations. Moreover, under this allocation, utilization of the new 3DM

equipment is relatively low. Average fixed spending per-scan totals $25.2 and is driven up

by the deployment of 3DM in small markets.

Column C illustrates the welfare gains at the optimal set of rural 3DM suppliers. I solve

for this set by iterating over all combinations of rural 3DM adoptions within each market,

selecting the group of potential 3DM adopters that maximizes total surplus. Under either

specification, this first-best allocation includes 12 rural adopters. These adopters all have a

positive effect on welfare, increasing baseline total surplus by $1.9 million, which corresponds

to a $1.19 social return on every dollar of investment in the rural 3DM supply.
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Table 5: Welfare Effects Under Counterfactual 3DM Allocations

A B C D E

Observed Universal Optimal Dist >12 mi
Dist >12 mi &

M>2.5k
(A0) (A1) (B0) (B1) (C0) (C1) (D0) (D1) (E0) (E1)

N 18 - 33 - 12 12 20 - 15

CSi ($) 7.1 - 5.2 - 8.9 - 8.1 - 6.8 -

Fi ($) 16.17 - 25.19 - 10.4 - 18.2 - 12.5 -

∆TSk <0 44% 32% 67% 60% 0% 0% 40% 36% 26% 26%

∆TS ($1,000s) 761 1,104 -1,033 -588 1,933 2,402 1,407 1,674 1,527 1,716

Social ROI 0.31 0.45 -0.23 -0.13 1.19 1.48 0.52 0.62 0.75 0.84

Notes: This table reports the welfare effect of simulated technology upgrades across alternative supply
distributions. Columns A report the effects of the observed set of adoptions; Columns B reflect the
counterfactual where every rural hospital adopts 3DM; Column C reflects the optimal allocation, which
maximizes total surplus. Columns D and E correspond to the counterfactual where 3DM is allocated
using observable market characteristics. Cutoff values of 12 miles and 2.5 thousand correspond to the
first quartiles of the distance and market size distribution. For each allocation, welfare results from the
baseline specification (0) and the alternative specification that accounts for spillovers (1) are displayed.
Row 1 shows the total number of rural adopters under each counterfactual. Row 2 shows the average
consumer surplus gain across adoptions. Row 3 reports the average fixed cost per scan, calculated as
total fixed cost divided by total 3DM volume at adopting hospitals. Row 4 reports the share of welfare-
negative adopters, while row 5 shows the net welfare effect across adoptions. Dollar values are reported
in thousands. Finally, Row 6 reports the social return on 3DM investment, calculated as the change in
total surplus divided by total fixed spending.

Under this perfectly targeted allocation, average consumer surplus is high, and average fixed

spending per scan is low. This illustrates that well-targeted investments are those that mean-

ingfully increase product variety while also ensuring sufficient scale.

Column D shows that the selective allocation rule based purely on distance increases

social welfare relative to the observed and universal scenarios. These gains result from the

improved targeting of funds toward hospitals that are horizontally differentiated from incum-

bents in terms of distance, highlighting the importance of product variety in this setting.

However, 40% of adoptions in this counterfactual have a negative effect on welfare, suggest-

ing that allocating investments solely based on distance is insufficient. This approach tends

to select adopters with inadequate scale. Under this policy, equipment spending per-scan is

relatively high compared to the optimal set.

Finally, I consider a two-part allocation criterion that targets funds based on distance and

potential market size. This counterfactual combines the previous two conditions, targeting
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investments at hospitals above the 25th percentile of the distance and market size cutoff.

Column E shows that preventing 3DM investment at hospitals at the tails of the character-

istic distribution substantially increases the welfare effect of adoption, achieving nearly 80%

of the welfare gains relative to the optimal allocation. This targeting mechanism reduces

investment at hospitals that operate in sparsely populated markets, where screening volumes

are insufficient to justify the large fixed cost of 3DM upgrades. However, average variety

gains are lower under this two-part allocation rule relative to the distance-based approach,

indicating that these efficiency gains come at the cost of reduced access in small markets

where patients remain isolated from 3DM.

7 Conclusion

This paper studies the welfare consequences of 3DM adoption at rural hospitals in Geor-

gia. Using quasi-exogenous variation from the state’s Rural Hospital Tax Credit, I estimate

both reduced-form effects of distance on screening choice and a structural model of patient

demand. The results show that local access to 3DM substantially increases utilization of

the technology, driven primarily by substitution away from lower-quality 2DM screenings.

Patients exhibit strong disutility of travel, and the value they place on local adoption is

highest in markets that were previously most remote from 3DM. Welfare analyses indicate

that, on average, adoption improved total surplus. However, I find that the benefits of adop-

tion vary widely across rural markets. While some adoptions generated substantial welfare

gains, others resulted in net losses when placed in sparsely populated or already well-served

markets. As a result, I find that an untargeted investment approach leads to large welfare

losses. My results show that an allocation rule where eligibility is determined by a hospital’s

remoteness and market size substantially improves targeting, delivering larger net welfare

gains without unnecessary public spending.

These results highlight a fundamental tension in rural health policy: expanding geo-

graphic access to advanced medical technologies generates meaningful welfare gains, but

those gains are highly heterogeneous and sometimes offset by cost inefficiencies. My anal-

ysis shows that adoption of 3DM at rural Georgia hospitals improved patient welfare on

average, with every public dollar invested yielding an additional $0.45 in total surplus. Yet,

adoptions resulted in welfare losses when new scanners were placed in small markets with

sufficient access to 3DM. These findings underscore that technology subsidies, while effective

in relaxing financial constraints and facilitating adoption, can lead to over-investment if not

carefully targeted. This suggests that blanket subsidies may not be the most effective way
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to close technology gaps. Instead, allocation mechanisms that account for observable market

characteristics can more efficiently direct funds to hospitals where the welfare benefits of

adoption are largest. The targeting rule I propose strikes a balance between serving isolated

patients and ensuring sufficient scale, providing a transparent framework that can be applied

to other rural service lines.

These findings contribute to broader debates in health economics and industrial orga-

nization, providing new insight into how fixed costs, geographic frictions, and patient het-

erogeneity interact to shape welfare outcomes from technology diffusion. In particular, I

complement prior work showing that provider entry often entails both beneficial increases

in product variety and socially redundant business stealing. My analysis shows that in rural

markets, these forces can be balanced by targeting funds based on observable market char-

acteristics. In addition, I find that the marginal rural adopter earns substantial profits from

3DM investment. If financial frictions prevent rural hospitals from investing in profitable

service upgrades, then policies subsidizing these upgrades could have positive downstream

effects on the financial stability of low-margin rural hospitals.

My results have several caveats. First, the consumer surplus calculation assumes that

the dollar value of time is constant across patients. Second, I use cost estimates from a

national survey of hospitals that may not be reflective of my rural sample. Third, while I

document meaningful heterogeneity across patient subgroups, data limitations prevent a full

accounting of unobservable health risks that may shape willingness to travel. Finally, my

setting focuses on breast cancer screening, and it is unclear whether the results would fully

generalize to other diagnostic technologies where cost and quality differ.

Nevertheless, this analysis offers important insight into how financial constraints and

public policy influence the allocation of medical technologies and access to care in rural

markets. The findings in this paper directly inform current federal efforts to modernize

the rural health care supply. Under the recent $50 billion appropriation to the Rural Health

Transformation Fund, states have unprecedented flexibility in the allocation of funds to rural

health care systems (CMS, 2025). My results suggest that public investments in rural health

care capacity can lead to significant improvements in access to high-quality diagnostic care.

Still, efficiency depends on where the funds are targeted. This analysis provides a framework

for designing allocation policies that better balance access and cost-efficiency. Overall, this

analysis demonstrates that investments in rural health care quality can yield meaningful

welfare gains by bringing services closer to those in need; however, maximizing those gains
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requires careful attention to where and how those investments are made.
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A Appendix Tables

Table A1: Program Information and Funding Allotments from 2017-2019

2017 2018 2019

Eligibility
County Population 35,000 50,000 50,000

Qualifying Hospitals 50 58 58

Participating Hospitals 49 58 58

Donations ($1,000s)
Statewide Cap 10,000 60,000 60,000

Total 9,227 59,505 46,516

Mean 188.3 1,025.9 802.0

25th Percentile 59.0 634.2 340.5

50th Percentile 128.0 865.0 579.5

75th Percentile 243.0 1,268.5 918.2

Notes: This table shows eligibility for the program and the evolution of do-
nations received from 2017-2019. In 2017, RHTC funds were only available
to non-private hospitals in counties with populations of less than 35,000.
In 2018, the population limit was raised to 50,000, and the number of par-
ticipating hospitals increased to 58. Over this time frame, nearly every
qualifying hospital received RHTC funds. The statewide cap on donations
was raised by $50 million in 2018, which led to a sharp increase in total
and average funds received. Source: Georgia Department of Community
Health.
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Table A2: Reported Use of Funds and Spending Across Categories in 2018

Funds Funds Funds
Available Spent Reserved

Mean $1,080,189 $871,584 $208,604

25th Percentile $684,623 $415,541 $0

50th Percentile $904,350 $802,032 $0

75th Percentile $1,292,252 $1,234,524 $386,388

Mean Median Frequency of
Category Spending Spending Spending

Operations $383,898 $93,570 32

Personnel $32,329 $13,125 16

Med-Equipment $249,948 $82,409 36

Facilities $219,484 $24,180 26

Other $147,725 $35,741 53

Notes: This table shows summary statistics from hospital-level reports on uti-
lization of RHTC funds in 2018. Columns 2, 3, and 4 display summary statistics
for the amount of RHTC funds available to hospitals in 2018, the funds spent
in 2018, and the unspent funds retained by hospitals as financial reserves. On
average, hospitals spent 80% of the funds available and held the remaining 20%
as cash reserves. The reported distribution shows that more than half of all
hospitals spent all available funds in 2018. The bottom half of panel B shows a
breakdown of hospital spending across categories. The largest share of RHTC
funds was spent on regular operating expenses. The second-largest reported
expenditure category in 2018 is the purchase of medical equipment. Source:
Georgia Department of Community Health.
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Table A3: Summary Statistics

Treated Control p-value

Panel A: Hospital
Net Worth 14,417.7 16,359.51 (0.428)

[21,544.1] [29,247.45]

Fixed Assets 14,537.8 13,876.4 (0.595)
12,426.8 14,227.5

Hospital Equipment 11,760.7 11,342.4 (0.59)
[7,438.6] [8,906.7]

FTE 0.25 0.29 (0.37)
[0.16] [0.32]

Inpatient Days 6.65 7.18 (0.475)
[6.42] [8.54]

Beds 51.4 49.5 (0.80)
[41.00] [56.49]

Government Owned 0.63 0.64

Hospital Count 58 95

Panel B: County
County Population 23,808.9 27,623.9 (0.01)

[13,700.7] [17,244.8]

Percent Uninsured 18.7 16.7 (0.01)
[3.2] [3.6]

Percent Above 65 15.9 16.5 (0.05)
[4.1] [2.7]

Percent Employed 89.6 87.5 (0.01)
[2.9] [3.9]

Notes: This table displays the mean 2016 characteristics for
subsidized rural Georgia hospitals and rural control hospi-
tals from other southern states. Standard deviations are
shown in brackets, and p-values are shown in parentheses.
County demographic variables are taken from the American
Community Survey. Source: HCRIS.
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Table A4: Identifying Screening Mammograms from CPT Codes

Modality Screening Diagnostic

3DM 77063 G0279, G0204, G0206

2DM 77067, G0202, 77057, 77052
77065, 77066,77051, 77055,

77056, G0204, G0206

Notes: This table displays the procedure codes used to identify screening
and diagnostic mammography encounters across imaging modalities.

Table A5: Comparing HCUP Screening Counts to Medicare Claims

Service Medicare HCUP Percent

Screening 3DM 85,515 74,859 87
Screening 2DM 173,719 132,223 76

Notes: This table presents a comparison of screening
mammography procedure counts between my primary data
source and the public-use Medicare aggregate files for Geor-
gia in 2018. To match the Medicare population, I subset
the HCUP data to individuals insured by Medicare FFS.
At the state level, I capture 87% of 3DM screenings and
76% of 2DM screenings.

Table A6: Reimbursements for Bilateral Screening Mammography

Service Medicare (FFS) Medicare Advantage Medicaid Private Self-Pay

2DM 129.29 119.98 135.45 302.09 37.49

3DM 182.15 169.04 190.08 425.88 52.82

Notes: This table shows the measures of mammography service reimbursements across categories
of payers. The Medicare FFS estimate is derived from the publicly available Physician Fee Sched-
ule file and adjusted for the Medicare Average Cost specific to the locality. To approximate
Medicare Advantage rates, I adjust the payments in Column 1 by 0.928 based on estimates from
American Hospital Association (2025), which calculated the average difference in outpatient reim-
bursements to rural hospitals across the payers in 2019. A similar report from MACPAC (2017) is
used to approximate the Medicaid and Self-Pay reimbursement rates. For private insurers, I rely
on novel data reported by Whaley et al. (2024), which shows average private reimbursements for
MRI and CT scans at the hospital level. For this service, the median private reimbursement rate
Georgia hospitals received was 234 percent above the Medicare benchmark. I assume a parallel
difference for mammography.
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B Supplemental Analyses

B.1 Triple Difference Estimates of Subsidized Adoption:

I test the robustness of these results by estimating the triple difference specification pre-

sented in Equation 16. This model accounts for potential Georgia-specific factors that may be

occurring concurrently with the implementation of the subsidy and could bias my estimated

treatment effects. I address these potential confounding state-specific factors by compar-

ing adoption rates among non-rural hospitals in Georgia with those of non-rural hospitals

located in control states. By differencing out adoption trends between these two non-rural

groups, this model is robust to time-varying state-specific confounders.

Yht = β1(GAh · postht · ruralh) + β2(postht ·GAh) + β3(postht · ruralh) + λt + µh + ϵht (16)

Table B1 presents the estimated effects from a standard difference-in-differences specifi-

cation alongside the triple difference results. I find a significant 11 percentage point increase

in the annual probability of 3DM adoption under the difference-in-differences specification,

which is significant at the 5% level. The triple difference estimate of 7.5 percentage points

is significant at the 10% level. Though smaller in magnitude, the qualitative nature of these

results suggests that the implemented subsidy drives the increased adoption of 3DM in rural

Georgia hospitals. This increase in 3DM adoption at rural Georgia hospitals created plausi-

bly exogenous variation in rural patients’ access to 3DM technology.
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Table B1: Effect of Subsidy on 3DM-Adoption

3DM-Purchase (DD) (DDD)

Post x Subsidy 0.11∗∗ 0.075∗

(0.035) (0.042)

Controls
Hospital FE Y Y
Year FE Y Y

Hospital-Year Observations 918 3,627

Notes: Column 1 reports estimates from the difference in differ-
ences model estimated using the sample of rural hospitals in GA
and control states. Column 2 reports estimates from the triple
differences model estimated using the sample of rural and urban
hospitals in GA and control states. Standard errors are clustered
at the hospital level. Source: FDA

B.2 Marginal Changes in Distance to 3DM:

I exploit changes in rural patients’ absolute distance to the nearest 3DM provider over

time to estimate the elasticity of screening choice with respect to distance.

Yizt = ρ dizt + λt + µz +Xi + Countyi · t+ ϵzt (17)

Using the same sample of screening observations from Section 3.3, I estimate the model

presented in Equation 17. The outcome variable Yizt is an indicator of whether individual

i chooses to screen with 3DM. My preferred specification controls for zip code and period

fixed effects; however, I also test the robustness of the results to patient-level controls and

county-specific time trends. Explanatory variable, dizt, is a continuous measure of distance

to the nearest 3DM provider in miles, so that ρ reflects the marginal effect of a change in

distance to 3DM on the probability of screening with 3DM-technology.
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Table B2: Effect of Absolute Distance to 3DM on Technology Choice

(1) (2) (3)

Panel A: Reduced Form—Dependent Variable: Screened with 3DM
Distance to 3DM −0.0058∗∗∗ −0.0059∗∗∗ −0.0063∗∗∗

(0.0008) (0.0009) (0.0008)

N 250,244 250,244 250,244

Panel B: First Stage—Dependent Variable: Distance Traveled
Distance to 3DM 0.6951∗∗∗ 0.6851∗∗∗ 0.6478∗∗∗

(0.0938) ( 0.0928) (0.0953)

N 68,817 68,817 68,817

Mean outcome 27.730 27.730 27.730

F-stat 64.9 37.6 5.348

Panel C: Second Stage—Dependent Variable: Screened with 3DM
Predicted Distance −0.0084∗∗∗ −0.0086∗∗∗ −0.0096
to chosen provider (0.0012) (0.0013) (0.0078)

Mean outcome 0.275 0.275 0.275

Zip code FE: X X X
Period FE: X X X
Individual Controls: X X
County-Time-Trend: X

Notes: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01,. This table displays the estimates from
equation 17, which quantify the impact of distance to 3DM on 3DM utilization.
Panel A reports the effect of distance to the closest 3DM provider in miles on the
probability of 3DM screening. Panel B displays estimates of the relationship be-
tween the minimum distance to 3DM and the distance to the chosen 3DM screening
provider. Panel C displays estimates from the second-stage regression, where the
predicted distance to the chosen 3DM providers is the explanatory variable. Each
column includes period fixed effects. Column 1 includes zip code fixed effects; Col-
umn 2 adds patient-level controls; Column 3 includes a linear time trend at the
county level. Standard errors are clustered at the zip code level, and bootstrapped
using 500 iterations in Panel C.

To account for the fact that some women don’t receive screenings at their nearest provider,

I follow the approach of Gazze (2024) and supplement the results from equation 17 with a

two-sample two-stage least squares (2SLS) model. This model is estimated using the sam-

ple of women who screen with 3DM, where the first stage regresses distance to the chosen

screening provider on distance to the nearest 3DM provider. I use estimates from the first

stage to construct a measure of predicted miles traveled to 3DM for the full sample, which is
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the explanatory variable in the second stage of estimation. This two-stage procedure scales

the reduced-form estimates of distance’s effect on screening decisions by the share of com-

pliers, that is, the individuals who change their screening technology choice in response to a

reduction in distance to 3DM. Standard errors for the second-stage estimates are constructed

using a bootstrap method.

Estimates in Panel A of Table B2 show that a one-mile increase in distance to 3DM

lowers the probability of 3DM-take-up by -0.58 percentage points, equivalent to a 1.7%

change in the mean outcome. This baseline estimated from column (1) is robust to alterna-

tive specifications, including individual controls and time-varying trends. Panel B shows a

strong first-stage relationship between minimum distance to 3DM and distance to the cho-

sen provider for all specifications except column 3. This estimate suggests that a one-mile

decrease in distance to the nearest 3DM provider reduces the average distance traveled for

3DM screening by approximately seven-tenths of a mile. Finally, I use the predicted distance

estimate from the first-stage regression to estimate the scaled effect for the entire sample.

Estimates in Panel C show that a one-mile increase in predicted travel distance to 3DM

reduces the probability of 3DM screening by -.084 percentage points. Together, these results

provide strong evidence that the distance to 3DM technology is a key determinant in the

adoption of 3DM.

B.3 Alternative Measure of Screening Compliance:

This section tests for evidence of the effect of rural 3DM adoption on county-level mam-

mography screening compliance. I use two measures of screening compliance in this analysis;

the first is constructed using Georgia HCUP data from 2016 to 2019. During this sample

period, the United States Preventive Services Task Force recommended that women aged 50

and above receive a screening mammogram every two years. I calculate two-year screening

compliance at the county level by using patient identifiers in the discharge data to construct

a measure of the number of unique screenings administered to women in each Georgia county

over a two-year period. I then scale this count by the ACS estimate of female county pop-

ulation for women 50 and up. I supplement this analysis with an additional county-level

compliance measure from the Dartmouth Atlas Dataverse’s Selected Primary Care Access

and Quality Measures dataset. This data contains county-level two-year mammography

screening compliance rates for women ages 67-69 in the fee-for-service Medicare population.
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For each data set, estimate the following two-way fixed effects model:

Yct = β0 + β1 ∗Rural ∗ Postct + C + τ + eht

Where Rural is an indicator for whether county c is defined as rural by the RHTC

eligibility criteria, and Postct is an indicator that equals 1 if any hospital in county c provides

3DM at time t. I estimate this model using county and year fixed effects. β1 captures the

average effect of rural 3DM adoption on county screening compliance rates, and is identified

by differences in compliance trends between rural adoption counties and all other counties in

the state before and after adoption. Column 1 of Table B3 reports an estimate of β1 using

the HCUP compliance measures, while column 2 shows the estimate from the Medicare FFS

sample. Both estimates are small and statistically indistinguishable from zero, suggesting

that rural 3DM adoption leads to substitution across screening types rather than an increase

in screening compliance.

Table B3: County Screening Compliance and Rural 3DM Adoption

(1) (2)

Rural ∗ Postct 0.0103 0.002
(0.809) (0.953)

Data Set HCUP Dartmouth Atlas
Sample Mean 0.68 0.71
County FE Y Y
Year FE Y Y
County Year Observations 415 415

Notes: This table shows estimates from a model regressing county-level
screening compliance rates on an indicator for rural 3DM adoption. Source:
HCUP/Dartmouth Atlas.
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B.4 Welfare Derivation:

This section derives the baseline change in total surplus when hospital k adopts 3DM.

Assume the market is composed of representative consumer i, and two firms: potential

adopter (k) and a competitor (j) that offers both 3DM and 2DM. Both hospitals receive

screening reimbursements ps paid by a representative insurer. Let TSk represent total surplus

in the counterfactual where k adopts 3DM and TS ′
k the non-adoption counterfactual.

TSk = CSi + πk + πj + πins

TS ′
k = CS ′

i + π′
k + π′

j + π′
ins

∆TS = TSk − TS ′
k = ∆CSi +∆πk −∆πj −∆πins

The change in profit for each group can be written:

∆πk = (p3 − c3) · (1−Di(k3D → k2D)) + (∆ps −∆cs) ·Di(k3D → k2D)− F

= (p3 − c3)[Di(k3D → j3D) +Di(k3D → j2D)] + (∆ps −∆cs) ·Di(k3D → k2D)− F

∆πj = (p3 − c3) ·Di(k3D → j3D) + (p2 − c2) ·Di(k3D → j2D)

∆πins = p3 ·Di(k3D → k2D) + p3 ·Di(k3D → j2D)

The net change in total hospital profits equals:

∆πk −∆πj = Di(k3D → j2D) · (∆ps +∆cS) +Di(k3D → k2D) · (∆ps −∆cs)− F

The total change in profit across all firms in the market is given by:

∆πk −∆πj −∆πins = −∆cs · (Di(k3D → j2D) +Di(k3D → k2D))− F

= −∆cs · Pi(3D)− F

Which gives a net welfare effect of:

∆TS = ∆CSi −∆cit − F
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